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The revisited reaction layer approximation (RLA) of metal flux at consuming interfaces in ligand mixtures,
discussed in the previous paper (part 1 of this series15) is systematically validated by comparison with the
results of rigorous numerical simulations. The current paper focuses on conditions under which the total
metal flux is enhanced in the ligand (and complex) mixture compared to the case where the individual fluxes
of metal complexes are independent of each other. Such an effect is exhibited only in ligand mixtures and
results from the kinetic interplay between the various complexes with different labilities. It is exemplified by
the Cu/NTA/N-(2-carboxyphenyl)glycine system (see part 1 paper), in which we show that the flux due to
the less labile complex (CuNTA) is increased in the presence of a ligand (2-carboxyphenyl)glycine) that
forms labile Cu complexes, even when the latter is in negligible proportion in the bulk solution. This paper
first explains how the so-called composite and equivalent reaction layer thicknesses computed by RLA can
be determined graphically from the concentration profiles of free metal and its complexes, as obtained by
rigorous calculations. This approach allows comparison between the latter and RLA predictions. Comparison
between these reaction layer thicknesses is then done using the chemical system mentioned above. The
mechanism of flux enhancement with this system is studied in detail by following the change of the
concentration profiles and reaction layer thicknesses with the increase of concentration of the ligand forming
labile complexes. The mechanism of flux enhancement is well explained by the RLA and is validated by the
concentration profiles obtained by rigorous numerical simulations. Based on this validation, the RLA is used
to predict the conditions of the individual complex labilities and degree of complexation required to get flux
enhancement in a two-ligand system. Due to compensation effects between kinetic and thermodynamic factors,
a maximum flux enhancement is observed in a specific range of ratios of the lability indices of the two
complexes. Flux enhancement might play a significant role in metal uptake in environmental or biological
systems and should be considered in data interpretation.

1. Introduction

The bio-uptake of vital or toxic metals by microorganisms is
frequently assumed to follow the free-ion activity model1-3 or
the biotic ligand model3,4 in which all chemical species of a
given metal are considered to be at equilibrium with each other
in the exposure medium. The metal uptake is then only
controlled by the free metal ion’s activity (fixed by its
thermodynamic speciation) and its transfer rate through the
plasma membrane. However, in a number of cases,3,5-8 par-
ticularly under conditions close to those of natural systems, such
as microorganism starvation,9 the dynamic processes, such as
diffusion in solution or kinetics of interconversion of chemical
species, may become the limiting factors for bio-uptake. The
importance of dynamic metal speciation is increasingly recog-

nized for understanding metal bio-availability and making
predictions on dynamic risk assessment.3,5,10,11

We consider the case of an interfacial process in which a
metal ion, M, is consumed in the presence of ligands forming
metal complexes. The overall flux of M toward the interface
results from the coupled diffusion and kinetics of interconversion
between M and its various complexes. Recently, rigorous
mathematical approaches have been derived for computing the
metal flux at consuming interfaces in the presence of multiligand
systems by solving the diffusion/reaction processes with either
an analytical solution12 or the numerical Lattice-Boltzmann
method.13,14 These new approaches make it possible to compute
the exact values of the total flux as well as the individual
contributions to the flux from each metal species. In particular,
such computations have shown15 that the total metal flux is
unexpectedly enhanced when ligand forming labile complexes
is added to a solution containing less labile complexes, even
when the former is a practically negligible component of the
bulk speciation. In other words, the ligand forming labile
complexes plays a catalytic-type role in the metal flux. However,
the intrinsic mathematical complexity of the above two rigorous
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approaches precludes a detailed physicochemical understanding
of the mechanism of this flux enhancement.

Recently, it has been shown15 that the flux enhancement in
mixed ligand systems can be explained via the reaction layer
concept,16 which was initially developed by Brdička, Koutecký,
and other members of the Heyrovský School,16-21 for solutions
containing one ligand, L, and one complex, ML (Figure 1a).
This so-called Koutecký-Koryta (KK) approximation is based
on the spatial division of the concentration profiles for M and
ML in the diffusion layer, δ, into nonlabile (0 e x e λ) and
labile regions (λ e x e δ), separated by the boundary of the
reaction layer with a thickness, λ (Figure 1a). (Note that µ is
used instead of λ in refs 16-21; λ is just a more general
mathematical expression.15,24) ML is assumed to be at equilib-
rium with M and L in λ e x e δ. The flux due to dissociation
of ML and diffusion of free M in the reaction layer
(0 < x < λ) equals the diffusive flux of M + ML toward the
reaction layer boundary (λ < x < δ). In addition, in the reaction
layer approximation (RLA) in 0 e x e λ, the concentration of
ML is considered as constant because ML is not consumed
directly at the interface and its dissociation is weak compared
to the diffusion flux of M. The reaction layer thickness, λ (or
µ), is fixed by the competition between the re-association rate
of free M (with L) and its diffusion rate, which enables it to
reach the interface before re-association can occur.15-21 The KK
approximation has found wide application for computation of
fluxes in a very simple, but, nevertheless, precise manner in
the complete kinetic range from nonlabile to labile complexes
for any metal-to-ligand ratio.16,22 It also leads to a simple
understanding of physicochemical processes of diffusion/
reaction. For instance, the purely kinetic metal flux at a planar
consuming interface (Figure 1a) can be computed either from
the concentration gradient of free metal ion:

J ) DM(d[M]
dx )x)0

) DM

[M]λ

λ
(1)

(assuming [M]0 ) 0), or from the chemical dissociation of ML
inside the reaction layer:

J ) kd[ML]0λ (2)

where [ML]0 ) [ML]x ) 0 and kd is the dissociation rate constant
of ML.

This concept has been extended to multiligand systems,15,23

at either planar or spherical consuming interfaces. In such a
system, a series of so-called composite reaction layers (λj1, λj2...;
Figure 1b) are defined for each of the metal complexes (M1L,
M2L,...) formed with the ligands 1L, 2L... In mixtures, the
reaction layer of a given complex is called “composite” because

it depends primarily on the rate constants of formation/
dissociation of the pertinent complex, but it is also dependent
on the complexation and diffusion properties of the other
complexes present. It has also been shown15 that, analogous to
the single complex case, the metal flux in a ligand mixture can
be computed based on a single “equivalent” reaction layer, λ̃,
which is a combination of the various composite layers (Figure
1b; see also Definitions and Symbols for definitions of the
various reaction layer thicknesses). This approach is called the
reaction layer approximation (RLA). It has been used to explain
the physicochemical basis for the above-mentioned unexpected
flux enhancement:15 the latter results from the thermodynamic
buffering of the free metal ion concentration at x ) λ̃ combined
with a decrease in λ̃ when the concentration of the ligand
forming labile complexes increases. As a consequence,
J () DM(d[M]/dx)x)0 ) DM[M]λ̃/λ̃) increases (Figure 1b).

The purpose of this paper is two-fold:
(1) We shall validate the equations derived for the composite

reaction layer thicknesses in ligand mixtures15 by comparing
them with the concentration profiles of free and complexed metal
species computed by rigorous mathematical solutions. For the
sake of clarity, this will be done for a two-ligand system by
using, as an example, the system Cu/NTA/N-(2-carboxyphe-
nyl)glycine, which exhibits flux enhancement.15

(2) Based on this validation, we will determine the conditions
under which a flux enhancement can be observed in a two-
ligand system. These conditions are deduced from contour plots
of the flux enhancement for variable values of the lability indices
of each complex (as arising from changes in [L] or K), which,
in turn, are directly related to the thickness of the corresponding
reaction layers.

2. Theory

In this paper, concentration profiles of M, M1L, and M2L and
the corresponding individual fluxes are computed rigorously by
using the computer code MHEDYN (Multispecies HEtergeneous
DYNamics, see Computation Method section). To demonstrate
the validity of the RLA in ligand mixtures, the fluxes and
composite reaction layer thicknesses of M1L and M2L computed
by the RLA15 are compared to those obtained from the rigorous
concentration profiles. Below, we show how the composite
reaction layers can be obtained graphically from these rigorous
concentration profiles.

2.1. Finding the Reaction Layer Thickness from Plots of
Concentration Profiles. To find reaction layer thicknesses in
a two-ligand system, it is easier to look first at a one-ligand
system (Figure 2a). Figure 2a shows, for an excess of L and at

Figure 1. (a) Schematic view of the concentration profiles in a solution containing one ligand L and one complex ML. (b) Schematic concentration
profiles of M, M1L, and M2L in a solution with two ligands, 1L and 2L, and two complexes, M1L and M2L, with different formation/dissociation
rate constants. Under perfect sink condition (as in this paper), [M]0 ) 0.
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steady-state, the rigorous normalized concentration profiles of
M, θ ) [M]/[M]*, and ML, ψ ) [ML]/[ML]*, where [M]*
and [ML]* denote the bulk concentrations of M and ML,
respectively. Figure 2a also shows the straight lines (1 and 3)
and (2 and 3), which are the profiles of θ and ψ, respectively,
assumed in the RLA. These lines are the tangent of θ(x) at point
(x ) 0, y ) 0) (line 1), the tangent of ψ(x) at point (x ) 0, y
) ψ0) (line 2), and the tangent of ψ(x) at point (x ) δ, y ) 1)
(line 3). Below, we show that, in practice, the reaction layer
thickness can be found on the x-axis at the intersection of any
two of these three lines.

The functions θ(x) and ψ(x) are15,24

θ ) C1 exp(-x/λ) + C2 exp(x/λ) +
(dθ
dx )x)0

x

1 + εK[L]
+

1-
(dθ
dx )x)0

δ

1 + εK[L]
(3)

ψ )
C1

εK[L]
exp(-x/λ) +

C2

εK[L]
exp(x/λ) +

(dθ
dx )x)0

x

1 + εK[L]
+

1-
(dθ
dx )x)0

δ

1 + εK[L]
(4)

with

C1 ) 1
2
( (dθ

dx )x)0
δ

1 + εK[L]
-1) exp(δ

λ ) csch(δ
λ )

C2 ) 1
2
(1-

(dθ
dx )x)0

δ

1 + εK[L]
) exp(-δ

λ ) csch(δ
λ )

λ ) � DM

ka[L] + kd/ε
) � DML/kd

1 + εK[L]
(5)

where ka and kd are the association and dissociation rate
constants, respectively, ε ) DML/DM is the ratio of the diffusion
coefficients of the complex ML, and free metal ion M, csch(x)
is the hyperbolic cosecant of x, δ is the diffusion layer thickness,
K is the stability constant of ML, [L] is the ligand concentration,
and λ is the reaction layer thickness of ML in a solution
containing only one ligand, L, when the diffusion domain is
infinite.15,24 As explained in ref 24, λ is a more general

expression of the reaction layer thickness than the conventional
one (µ ) (DM/ka[L])1/2), which is valid only when εK[L] . 1.

From eq 3, the normalized concentration profile for the free
M at x ) 0 follows as

(dθ
dx )x)0

) ( δ
1 + εK[L]

+ λεK[L]
1 + εK[L]

tanh(δ
λ ))-1

(6)

while the surface-normalized concentration of ML derived from
eq 4 is:

ψ0 )
λ tanh(δ

λ )(1 + εK[L])

δ + λεK[L] tanh(δ
λ )

(7)

and it can be shown that when λ , δ:

(dψ
dx )x)δ

) 1

δ + λεK[L] tanh(δ
λ )

(8)

Now from the slope of line 3 (Figure 2a) it follows

ψ0-1 ) (dψ
dx )x)δ

(xi-δ) (9)

where xi is the abcissa corresponding to the intersection of lines
2 and 3. By combining eqs 7-9, one gets

xi )
cλ ) λ tanh(δ

λ ) (10)

which indeed is the “effective” reaction layer thickness. As
explained in ref 15, λ is the value of the reaction layer thickness
under the condition of semi-infinite diffusion (δf∞). When a
finite value is imposed to δ, the reaction layer cannot be larger
than this value and the effective reaction layer thickness is
corrected by the tanh term (for δ/λ > 3, tanh(δ/λ) ≈ 1, and
cλ ) λ; for 0 < δ/λ < 0.01, tanh(δ/λ) ≈ δ/λ).

Similarly, the equation of line 1 (Figure 2a) is θ ) (dθ/dx)x)0x. In
combination with eq 6 and θ)ψ0 (eq 7), we obtain the corresponding
abscissa, xi, of the intersection between lines 1 and 2:

xi )
cλ (11)

which shows that xi is also equal to the corrected reaction layer
thickness, cλ (eq 10). Thus, the intersection of any two of the
lines 1, 2, or 3 of Figure 2a, as defined above, can indeed provide
the reaction layer thickness. This provides three methods for
finding cλ.

Figure 2. (a) Schematic view of the normalized concentration profiles in a solution with one ligand and one complex (when θ0 ) [M]0 ) 0). (b)
Schematic normalized concentration profiles of M, M1L, and M2L in a solution with two ligands, 1L and 2L, and two complexes, M1L and M2L,
with different formation/dissociation rate constants.
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By extrapolating the above reasoning to a two-ligand system
and making use of the above three combinations of intersections
of lines, the following strategy can be adopted for the two-
ligand system (Figure 2b).

(a) The intersection of lines 4 and 5 should be used for finding
the reaction layer thickness, cλ2, of the less labile complex, M2L.

(b) The intersection of lines 1 and 2 should be used for finding
the reaction layer thickness, cλj1, of the more labile complex,
M1L. Indeed, the composite reaction layer of the more labile
complex is always smaller than that of the less labile one.15

(c) The intersection of lines 1 and 5 should be used for finding
the equivalent reaction layer thickness.

cλj1 and cλj2 are the effective (corrected) composite reaction
layers, given in ref 15. For a two-ligand system, the equivalent
reaction layer (see above and ref 15) is given by:

λ̃ )
Rt

′-1

Rt
′ [cλ̄1(1- 1

R1
′ ) + cλ̄2( 1

R1
′-

1

Rt
′)] (12)

with

Rt
′ ) 1 + 1ε1K[1L] + 2ε2K[2L], R1

′ ) 1 + 1ε1K[1L], and

R2
′ ) 1 + 2ε2K[2L]
2.2. Fluxes and Flux Enhancement in Two-Ligand Sys-

tems. Since M1L and M2L are not consumed at the interface,
the total flux of M, Jt, is rigorously expressed by eq 1, which
in the frame of RLA reduces to

Jt ) DM[M]c
λ̄1

/cλ̄1 (13)

or equivalently:15

Jt ) DM[M]λ̃/λ̃ (14)

It has been shown that the above equation can also be written
as:15

Jt )
Jlab

1 +
λ̃(Rt

′-1)

δ

(15)

where Jlab is the maximum flux when all the complexes are fully
labile (for definition of lability, see eq 20) and is equal to15,16

Jlab )
DMRt

′[M]*

δ
(16)

Equations 14 and 15 take into account any possible interplay
between M1L and M2L, which may lead to flux enhancement.
If this interplay did not exist, then the total flux Jt

0 would simply
be the sum of the separate fluxes of M, M1L, and M2L in the
absence of the others, i.e.:

Jt
0 ) JM + JM1L + JM2L )

Jlab

Rt
′ +

Jlab

Rt
′ (R1

′-1)

1 +
cλ1(R1

′-1)

δ

+

Jlab

Rt
′ (R2

′-1)

1 +
cλ2(R2

′-1)

δ

(17)

where cλ1 and cλ2 are the corrected reaction layer thicknesses
in solution containing M and only 1L or 2L.

Accordingly, the flux enhancement factor is defined as

σ )
Jt

Jt
0

(18)

Consider a solution containing both 1L and 2L and a constant
total concentration of M, with M1L being more labile than M2L.
When [1L] increases (at a fixed concentration of 2L), both Jt

and Jt
0 may increase due to the increased proportion of the more

labile M1L. In such a case, however, σ remains equal to 1. A
flux enhancement (σ > 1) only occurs when conditions are such
that the lifetime of M at the interface is decreased (by formation
of the labile complex M1L), while its free concentration is
maintained constant (by buffering with M2L). These conditions
are fulfilled when

Figure 3. Normalized concentration profiles of Cu, CuNTA (≡Cu2L),
and Cu-N-(2-carboxyphenyl)glycine (≡Cu1L) at [1L] ) 0.1 mM, [NTA]
) 10-5 M, [Cu]t ) 10-8 M, pH ) 7.00, T ) 25 °C, I ) 0.1 M: (a)
logarithmic plot and (b) linear plot. The solid lines correspond to the
tangents at curves θ(x) (at points (0,0)), ψ1(x) (at point (0, [CuL]0/[CuL]*)),
ψ2(x) (at point (0, [CuNTA]0/[CuNTA]*)), and ψ2(x) (at point (δ, 1)) in
the linear plots. The numbers on the curves have the same meaning as in
Figure 2b. Parameters: see Supporting Information, Table S1.
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(1) [M]* , [M1L]* , [M2L]*, which also corresponds to
1 , R1′ , R2′ for “simple ligands” for which DML ≈ DM (1ε ≈
2ε ≈ 1), and

(2) M1L is more labile than M2L, i.e., cλ1 , cλ2.
It can be shown (Supporting Information, Section 1) that

under these conditions, a flux enhancement (σ > 1) is observed
when

L1 > 1

√R1
′

cλ2

cλ1

+
cλ1

cλ2

(19)

where L 1 is the lability index of M1L in the absence of ligand
2L, given by26

L1 ) δ
cλ1

1ε1K[1L]
≈ δ

cλ1R1
′ (20)

Note that cλ1 also includes [1L] (eq 5). The lability index is
a useful composite parameter to classify quantitatively the
lability of complexes: when L . 1, the complexes are fully
labile, i.e., they can dissociate and form again many times during
their diffusion toward the consuming interface; when L , 1,
the complex is nonlabile, and the flux is controlled by its
dissociation rate; when 10 > L > 0.1, the complex is semilabile.

3. Computation Method

The flux and concentration profiles are rigorously computed
by using the flux computation code MHEDYN,25 which is based
on a Lattice-Boltzmann method for the numerical solution of
the diffusion/reaction equations. It is coupled to a time splitting
technique and a grid refinement method13,14 in order to treat
physicochemical systems with dynamic parameters varying over
many orders of magnitude. Systems containing an unlimited
number of ligands and complexes can be treated. MHEDYN
allows the contribution to the metal flux and concentration
profile of any species to be computed in the transient- and
steady-state regimes, without requirement of ligand excess
compared to metal. The boundary conditions used here are a
planar consuming interface working as a perfect sink. At very
small distances from the interface (x < 10 nm), the computation
of precise concentration profiles may be very time consuming
with MHEDYN. In this case, the equations derived in ref 12
have been used. The reaction layer thicknesses are computed
based on the equations derived in the RLA.15

The rigorous contour plots (Figures 7 and 8, see below) are
computed by the code FLUXY in its RS mode.23,26 This
algorithm is based on the rigorous analytical solution of
diffusion/reaction equations12 for conditions of excess ligand
over metal. The computations with FLUXY are fast. User-
friendly versions of MHEDYN and FLUXY codes are available
at http://www.unige.ch/cabe/dynamic.

4. Results and Discussion

4.1. Reaction Layer Thicknesses: Comparison between
RLA and Rigorous Concentration Profile Computations.
Figure 3 shows examples of normalized concentration profiles
of Cu, CuNTA, and Cu-N-(2-carboxyphenyl)glycine at 0.1 mM
N-(2-carboxyphenyl)glycine. The composite reaction layer
thicknesses and the equivalent reaction layer thicknesses
indicated in Figure 3 are obtained by the method described in
section 2.1. It can be seen that the reaction layer thickness of
the less labile complex, CuNTA, is indeed the largest and that
of Cu-N-(2-carboxyphenyl)glycine is the smallest, while the
equivalent reaction layer thickness lies in between. The com-

parison of the reaction layer thicknesses determined from the
concentration profiles with those computed by the RLA at
different N-(2-carboxyphenyl)glycine concentrations is shown
in Table 1. It can be seen that the values of reaction layer
thicknesses of CuNTA determined by these two methods are
very close to each other for all concentrations of N-(2-
carboxyphenyl)glycine. The differences observed for cλ1 at small
concentrations of N-(2-carboxyphenyl)glycine are somewhat
larger, but still less than 25%. Part of this error may be due to
the graphical uncertainties in plotting the tangent. In any case,
the total flux in a ligand mixture computed via the equivalent
reaction layer thickness never differs by more than a few percent
from that computed rigorously.

TABLE 1: Reaction Layer Thicknesses Computed from the
Concentration Profiles Obtained by Rigorous Computations
and by the RLAa

cλj1 (m) cλj2 (m) λ̃(m)

log([1L]/M) RLA
from

profile RLA
from

profile RLA
from

profile

-7.00 4.86e-07 3.90e-07 1.65e-06 1.51e-06 1.29e-06 1.25e-06
-6.30 3.37e-07 2.99e-07 2.47e-06 2.32e-06 9.96e-07 9.56e-07
-6.00 2.62e-07 2.43e-07 3.21e-06 2.83e-06 8.01e-07 7.77e-07
-5.30 1.29e-07 1.26e-07 6.63e-06 6.92e-06 4.07e-07 4.02e-07
-5.00 9.23e-08 9.09e-08 9.28e-06 9.35e-06 2.93e-07 2.90e-07
-4.30 4.17e-08 4.12e-08 2.06e-05 2.04e-05 1.33e-07 1.31e-07
-4.00 2.95e-08 2.90e-08 2.90e-05 2.86e-05 9.40e-08 9.25e-08

a 1L is N-(2-carboxyphenyl)glycine and 2L is NTA. yex ) y10x

Figure 4. Normalized concentration profiles of free Cu at different
concentrations of 1L (N-(2-carboxyphenyl)glycine): (a) Logarithmic plot
and (b) Linear plots (inset shows a different scale of x). [X]* is the
bulk concentration of X. Parameters: see Supporting Information, Table
S1. Boxes show concentrations of 1L.
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4.2. Flux Enhancement: Comparison between RLA and
Rigorous Computations. Figures 4-6 show the normalized
concentration profiles of Cu, CuNTA (≡Cu2L), and Cu-N-(2-
carboxyphenyl)glycine (≡Cu1L), at different N-(2-carboxyphe-
nyl)glycine concentrations. It can be seen that for free Cu (Figure
4), the concentration gradient at x ) 0 increases with the
concentration of N-(2-carboxyphenyl)glycine, which reflects a
corresponding increase of the total flux. The normalized
concentration of free Cu at the boundary of the composite
reaction layer of Cu-N-(2-carboxyphenyl)glycine, cλj1 (Table
2), is almost constant, and the same trend is observed at the
boundary of the equivalent reaction layer, λ̃, because [Cu] is
buffered by NTA over the whole range of N-(2-carboxyphe-
nyl)glycine concentrations (Supporting Information, Figure S1).
On the other hand, cλj1 decreases from 3.90 × 10-7 m (based
on concentration profiles; 4.86 × 10-7 m based on RLA) to
2.90 × 10-8 m (from concentration profiles; 2.95 × 10-8 m
from RLA) when the concentration of N-(2-carboxyphenyl)g-
lycine increases (Table 1). Interestingly, the equivalent reaction
layer, λ̃, follows the same trend as cλj1 (a decrease by a factor
of ∼10 when [1L] increases), while simultaneously cλj2 increases.
Thus, λ̃ is controlled by the kinetics of the more labile complex,
Cu1L, even when its bulk concentration is negligible compared
to Cu2L.

The constant value of [Cu]cλj1
combined with the decreasing

value of cλj1 when [1L] increases leads to the corresponding
increase of the total flux, Jt, (Table 2) computed by eq 13 based
on cλj1. Because the changes of the values of [Cu]λ̃ and λ̃ closely
follow those of [Cu]cλj1

and cλj1, respectively, the values of Jt

obtained from the RLA15 (eq 15 based on λ̃) are very close to
the rigorous ones.

The normalized surface concentrations of Cu-N-(2-carbo-
xyphenyl)glycine ([Cu1L], Figure 6) are almost constant over
the whole range of N-(2-carboxyphenyl)glycine concentration.
This shows that its degree of lability (�1 ) 1 - [Cu1L]0/[Cu1L]*)
remains almost constant, irrespective of [1L]. Thus, the flux
enhancement cannot be explained by a contribution of Cu-N-
(2-carboxyphenyl)glycine, by an increase of either its degree
of lability or bulk concentration, since the latter is always
negligible in the whole range of [1L] (Supporting Information,
Figure S1).

The normalized concentrations of CuNTA (Figure 5) at the
consuming surface decrease from 0.99373 (for [1L] ) 0) to
0.92925 ([1L] ) 0.1 mM), which results in a 10-fold increase
in its degree of lability, from 0.00627 to 0.06075. Thus, CuNTA
becomes more labile in the presence of Cu-N-(2-carboxyphe-
nyl)glycine. Since the degree of complexation of CuNTA is
much larger than that of Cu1L, [Cu] is well buffered by CuNTA,
and its bulk concentration is constant in the whole range of
N-(2-carboxyphenyl)glycine concentration (Supporting Informa-
tion, Figure S1). The net effect is that the individual flux due
to CuNTA increases about 10-fold because of the corresponding
increase of its lability degree, which results in the observed flux
enhancement.

4.3. Conditions for Flux Enhancement in Two-Ligand
Systems. In this section we discuss the conditions under which
a significant flux enhancement (σ > 1) can be observed. Even
with a system including only two ligands and two complexes,

Figure 5. Normalized concentration profiles of CuNTA at different
concentrations of 1L(N-(2-carboxyphenyl)glycine): (a) Logarithmic plot
and (b) Linear plots (inset shows a different scale of x). [X]* is the
bulk concentration of X. Parameters: see Supporting Information, Table
S1. Boxes show concentrations of 1L.

Figure 6. Normalized concentration profiles of Cu1L at different
concentrations of 1L (N-(2-carboxyphenyl)glycine): (a) Logarithmic plot
and (b) Linear plot (inset shows a different scale of x). [X]* is the
bulk concentration of X. Parameters: see Supporting Information, Table
S1. Boxes show concentrations of 1L.
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σ may be influenced by up to 10 independent parameters (four
rate constants, three diffusion coefficients, one δ value, and two
ligand concentrations). Thus, it is not a simple task to describe
the optimum conditions under which σ > 1. As discussed in
section 2.2 and the Supporting Information, an approximate
condition (eq 19) relates L 1 to R′1, cλ1, and cλ2. In the following,
we study these optimum conditions by means of contour plots
of σ values as a function of the individual lability indices, L 1

and L 2, of M1L and M2L; L is a good combination parameter
which is sensitive to the whole of the dynamic properties of a
given complex. Nevertheless, σ is not a function of L 1 and L 2

only. Thus, different contour plots can be obtained (e.g., Figure

7 and 8) depending on which parameters are varied to change
the values of L 1 and L 2.

Figure 7 shows contour plots of the flux enhancement factor,
σ (eq 18), as a function of L 1 and L 2 when their values are
changed via variation of the stability constants, 1K and 2K. The
predictions of flux enhancement by the RLA (red dotted line)
are almost the same as those obtained by the rigorous analytical
solutions.12 Both methods predict that by varying 1K and 2K, σ
is almost independent of L 2 in most of the plot and that the
maximum value of σ is found at L 1 ≈ 70. The contour plot
also shows that, when M1L and M2L have the same lability
indices (L 2 ) L 1), σ ≈ 1 (the upper left corner of Figure 7).

The fact that σ is almost independent of L 2 when 1K is
constant and 2K decreases can be explained by the RLA, as
follows. By combining eqs 15 and 17 with JM , JM1L and JM

, JM2L, we find that

σ ) ( 1
δ
R1

′ + cλ1

+ 1
δ
R2

′ + cλ2)-1( 1
δ
Rt

′ + λ̃) (21)

which can also be written as:

σ )
( Rt

′/δ

1 + λ̃Rt
′/δ)

( R1
′ /δ

1 + 1/L1
+

R2
′ /δ

1 + 1/L2
)

(21a)

Since L 2 , 1, 1/L 2 . 1 and the second term in the
denominator is equal to cλj2 which is independent of 2K. Thus,
the whole denominator of eq 21a is constant when 2K varies.
In addition, λ̃ is almost independent of 2K, under the condition
R′t .1 (eq 12), which was used to draw Figure 7 (section 2.2).
Thus, both the numerator and denominator of eq 21a are almost
independent of 2K.

Figure 8 shows the contour plots obtained by varying L 1 and
L 2 via changes in the ligand concentrations [1L] and [2L]. This
case is a bit more complicated than the former one because
varying the ligand concentration changes not only the degree
of complexation, but also changes the cλj value of the pertaining
complex. Again, we find (Figure 8) that when L 2 ) L 1, σ ) 1
(the upper left corner of Figure 8). By increasing L 1, at a given
value of L 2 (i.e., by keeping [2L] constant and decreasing [1L]),
σ first increases and then decreases. This can be explained as
follows: in the first step, the concentration of 1L is not sufficient
to form M1L in significant proportions, but it is sufficient to
decrease the lifetime of M at the consuming surface, i.e. to

Figure 7. Contour plot of the flux enhancement as a function of lability
indices of two complexes by changing their stability constants. Black
solid line is the rigorous solution. Red dotted line is the RLA.
Parameters: see Supporting Information, Table S2.

Figure 8. Contour plot of the flux enhancement as a function of lability
indices of two complexes by changing ligand concentrations. Black
solid line is the rigorous solution. Red dotted line is the RLA.
Parameters: see Supporting Information, Table S3.

TABLE 2: Normalized Free Cu Concentrations (i) at the
Boundary of the Effective Composite Reaction Layer, cλj1, of
Cu1L Computed from the Concentration Profiles and from
the RLA, and (ii) at the Boundary of the Equivalent
Reaction Layer, λ̃, (see also Table 1)a

[Cu]cλj1
/[Cu]* Jt/Jt

0

log([1L]/M)

cλj1 from
RLA

cλj1 from
profiles [Cu]λ̃/[Cu]* RLA

rigorous
computation

-7.00 0.30 0.25 0.993 1.06 1.09
-6.30 0.25 0.23 0.991 1.38 1.40
-6.00 0.23 0.22 0.989 1.69 1.71
-5.30 0.20 0.20 0.980 3.17 3.18
-5.00 0.20 0.19 0.972 4.23 4.22
-4.30 0.19 0.19 0.941 7.32 7.30
-4.00 0.18 0.18 0.919 8.23 8.23

a 1L is N-(2-carboxyphenyl)glycine.
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increase the overall lability of the metal complexes. The flux
is, thus, enhanced by increasing [1L]. In the second step (i.e.,
after the maximum of σ), a further increase of [1L] produces
M1L in significant and increasing proportions and an overall
increase of lability of all complexes due to interfacial kinetic
effect becomes less and less attainable, since the more labile
complex M1L becomes dominant. When L 1 is maintained
constant and L 2 is increased, σ also increases first and then
decreases. This reflects the fact that the flux enhancement
results from the interplay between M1L and M2L, via M, at
the interface: when the difference in lability indices of the
two complexes is too large or too small, this interplay does
not occur. So Figure 8 shows that, under the conditions used,
an optimum ratio of L 1/L 2 ≈ 1000 is required to get a
maximum value of σ.

5. Conclusions

The present results show that the RLA, expressed in terms
of composite reaction layers for solutions containing mixtures
of ligands, is very useful for computation of metal fluxes at
consuming interfaces. Furthermore, it provides a mechanistic
level of understanding of the details of physicochemical
processes taking place at the interface. The composite and
equivalent reaction layer thicknesses, deduced in the RLA,
clearly result from the interplay between all the complexes at
the interface. They are validated quantitatively by the concentra-
tion profiles rigorously computed by numerical simulation. In
particular, the RLA enables precise predictions to be made on
the conditions of flux enhancement in two-ligand systems, i.e.
under conditions where the interplay of complexes is very large.
It has been shown that the flux enhancement depends on the
relative labilities of the two complexes and their dynamic
degrees of complexation.

It must be stressed that interplay between complexes at
consuming interfaces may lead not only to flux enhancement
of the less labile complex, when the concentration of ligand
forming labile complexes is increased, but also to a decrease in
flux of the more labile complex,27 by increasing the concentra-
tion of ligand forming the less labile complex. This latter effect,
however, is observable only when the two complexes are in
similar proportions, i.e., the interfacial decrease of lability of
the more labile complex is often masked by a simultaneous
significant decrease of its proportion in the bulk solution.
Overall, the impact of ligand mixtures on the dynamic speciation
of the metal complex system is involved. The establishment of
more quantitative relationships, e.g., between signals furnished
by flux-based sensors and bio-uptake fluxes in mixed ligand
media, must consider the potential interplay of species as
detailed herein. In particular, when interpreting experimental
flux measurements in unknown complicated media, it is difficult
to assess the possible role of flux enhancement by a ligand
forming labile complexes in very minor proportions. Extrapolat-
ing these results to other media, which do not contain this ligand
and the corresponding complexes, may then lead to erroneous
conclusions. Interpreting the experimental data by comparison
with dynamic modeling may be very helpful in that respect.
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Appendix

Definitions and Symbols

Definitions of Reaction Layer Thicknesses

µ (DM/ka[L])1/2, conventional expression of the reaction
layer thickness, valid for a solution with one
ligand, forming a strong complex ML with DML

≈ DM

λ (DM/(ka[L] + kd/ε))1/2, general expression of the
reaction layer thickness for a solution containing
one ligand

λj composite reaction layer thickness, for a given
complex in the presence of several other ligands,
under conditions of semi-infinite diffusion (time-
dependent diffusion layer thickness not imposed
by geometric or hydrodynamic conditions)

cλj effective composite reaction layer thickness, as
above, but under conditions where the diffusion
layer thickness is imposed by external conditions
and independent of time

λ̃ (fictitious) equivalent reaction layer thickness rep-
resentative of the kinetics of the whole of the metal
complexes in a mixture of ligands

List of Symbols

DM diffusion coefficient of free metal ion
Jt total metal flux
Jlab maximum metal flux when all the complexes are

fully labile
Jt

0 sum of the separate fluxes of M, M1L, and M2L in
the absence of the others

ka association rate constant of the reaction M + L h
ML

kd dissociation rate constant of ML
K equilibrium constant of the reaction M + L h ML
L ligand
L lability index of the complex ML
ML metal complex
Rj′ dynamic degree of complexation
ε normalized diffusion coefficient of complex ML
σ (Jt/J t

0), the flux enhancement factor
δ diffusion layer thickness

Supporting Information Available: Derivation of the
conditions to obtain the flux enhancement in a solution
containing two ligands, as well as the parameter values and
species distribution used to compute the metal flux in the system
Cu(II)-NTA-N-(2-carboxyphenyl)glycine. This material is avail-
able free of charge via the Internet at http://pubs.acs.org.
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